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Abstract. This article presents our experience in re-engineering a pres-
sure sensing system – a subsystem often found in safety-critical medical
devices – using the B formal method. We evaluate strengths and limita-
tions of the B method and its supporting platform Atelier B in this con-
text. We find that the current state-of-the-art of model-oriented formal
methods and associated tool-sets, especially in automatic code genera-
tion, requires further improvement to be amenable to a wider deployment
to industrial applications for model-driven engineering purposes.

1 Introduction

One of the ways to promote the use of formal methods for model-driven engi-
neering of industrial applications is to demonstrate the ability of formal methods
to automatically generate executable source code from “correct by construction”
software models [10]. However, automatic generation of code from a formal spec-
ification such that it requires no further human intervention or post-processing
before deployment is a weak link in the development chain [3].

Dataflow-oriented frameworks, such as Simulink1 or Safety-Critical Appli-
cation Development Environment (SCADE)2, are already popular for their
model-driven engineering capabilities in safety-critical domains such as avion-
ics and automotive systems [27]. The appeal of these frameworks stems from
their graphical notation and simulation capabilities. However, as compared to
model-oriented formal methods [12], these frameworks lack sophisticated verifi-
cation techniques which guarantee correctness [10] and also suffer from scalability
issues [28]. Model-oriented formal methods lend themselves better to abstraction
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and reduction techniques, the key ingredients in modeling and proving correct-
ness properties, and are supported by a variety of model checkers and theorem
provers.

In practice, however, many projects are not about developing new software
systems from scratch but improving on existing software systems or porting
them to new platforms. Thus, it would also be desirable to be able to use formal
methods in maintenance and re-engineering projects. Thereby it should also be
possible to transform only parts or individual modules. Doing so would improve
the quality of software systems and this would also increase the potential for
automation such as automatic code generation.

In this article, we report about our experience with the development of a con-
trol software for a Pressure Sensing System (PSS) – a subsystem of a hemodialy-
sis machine [21]. A typical pressure sensing system reads sensor data, transforms
the data into meaningful information, saves results, checks whether different val-
ues are within certain ranges (which depend on certain modes of running the
machine), and raises different types of alarm if defined thresholds are violated.

Based on our experience that stems from the application of formal meth-
ods on several industrial and academic projects, for example, hemodialysis
machines [23,24], aircraft landing gear system [16], machine control systems [25],
and stereoacuity measurement system [5], we decided to use the B method [2]
for the task. The B method enjoys extensive tool support, covers all the neces-
sary development phases (e.g., support for code generation), and the developers
of the PSS system already had experiences with it. Related model-oriented for-
mal methods either do not cover all phases of development, e.g., there is no
automatic code generator available for Alloy [14], Temporal Logic of Actions
(TLA+) [18] and Z [29], or have limited code generation capabilities, e.g.,
Abstract State Machines (ASMs) [8], Event-B [4] and the Vienna Development
Method (VDM) [15]. A detailed comparison of various model-oriented formal
methods concerning their modeling and code generation capabilities is available
in [17].

The main objective of the development was the automatic generation of C
language code from a formal requirements model that was, in turn, developed
through a re-engineering process. Due to space limitation (and also a nondisclo-
sure agreement with the case study provider), we do not include artifacts, such
as model and code, in the paper. We also deliberately omit a detailed discussion
on the “traditional” use of formal methods, e.g., requirements modeling, prop-
erty verification, assessment of code complexity, and proof statistics. For such
a discussion, interested readers may consult the work by Mashkoor [22] that
contains a detailed account of our effort of model-driven engineering of various
components of a hemodialysis machine including a discussion on verification and
validation. Here, we rather focus on the modeling and code generation experience
with the B method.

In the following, we first briefly describe the B method in Sect. 2. Then we
present the case study including its description, overall aim and objectives in
Sect. 3. In Sect. 4, we highlight the undertaken re-engineering process. In Sects. 5
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and 6, we report the experiences and challenges we met in the course of modeling
and code generation with the B method respectively. Section 7 discusses some
related work. The paper is concluded in Sect. 8 with a discussion on deployed
methods and tools.

2 B Method

B is a refinement- and state-based formal method. A B model describes data
structures and operations thereupon. A state is defined by particular values of
the variables of the data structure, and operations describe state transitions. A
so-called machine captures a part of the data structure, constraints on the data
structure, and operations on the values of the data structure. Requirements are
basically described either by constraints (this includes, e.g., safety requirements)
or by operations. In a way, a machine resembles programming code for a software
module, but it is more abstract, is not tailored to a specific platform, captures
requirements more directly, and is suitable for logical analysis.

Modeling in B starts with one or more abstract machines which are sup-
posed to capture the most basic requirement(s) in a concise way. These machines
are then refined by adding constraints and detailing the actions of operations,
according to additional requirements. This is done in separate files which are
called “refinements.” This way, the consecutive development of the formal spec-
ification is well documented. Verification includes proving that each refinement
preserves the specified properties of the abstract machine or of the previous
refinement.

A special case of refinement is called “implementation.” This does not add
further requirements to the model, but transforms the final specification model
into a form which is suitable for code generation.

The three different machine types – abstract machines, refinements, and
implementations – must obey different constraints regarding the language in
which they can be expressed. The language for implementations even has its
own name, B0 (“B zero”).

Tool support for modeling and analyzing in B is available in the form of
the Atelier B platform3. Atelier B includes an editor, syntax and type check-
ers, a proof obligation generator, automatic provers and an interactive proving
environment, as well as code generators for different target languages. A stand-
alone model checker and animator, ProB [20], is available for B and can be used
together with Atelier B.

3 Pressure Sensing System Case Study

3.1 Case Study Description

Pressure sensors are important ingredients of modern diagnostic and therapeutic
devices such as dialysis machines, respiratory devices, drug-delivery systems and
3 http://www.atelierb.eu.

http://www.atelierb.eu
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patient monitors. Pressure sensors provide either gauge or differential pressure
that is used for various purposes, e.g., extracting and measuring volumetric flow
rates, and total fluid volume transferred. This allows to monitor drug administra-
tion and to detect anomalies, in which case alarms can be raised. Consequently,
pressure sensors enhance the capabilities of medical devices by providing physi-
cians with the ability to measure blood pressure, administer precise quantities
of drugs or oxygen, and track patient compliance.

A PSS is safety-critical with respect to human health and life. For instance,
in dialysis machines, PSS are vital to ensure that the dialyzed fluid is pumped
back into the human body with the right pressure. If the pressure is not within a
certain range, an alarm must be raised and the flow must be disconnected from
the patient. Both admissible range and type of alarm are thereby dependent on
operation mode and other circumstances. Raising an alarm is part of the tasks
of PSS software, whose code may attain several thousands LoC (much of which
is dedicated to interfaces and data structures).

The PSS is not large but still a nontrivial system. Its implementation uses
relatively few programming constructs; in particular, no loops and no recursion
are used. Thus we could test only a roughly estimated half of B’s major language
constructs, and even less of common programming constructs. Yet this is not
uncommon for hardware control software, and the restriction of constructs used
facilitates safe modeling and programming – or code generation – as well as
verification. At the same time, complex data structures with many fields are used
in the interface, and many and often nested case distinctions have to be made, in
particular for determining whether different values are within permissible limits
and how to react if not, depending on various factors, including the operation
mode. The interface also requires many type casts to be performed, amongst
others. With an order of magnitude of a thousand lines of code, all this makes
the software liable to error and thus formal analysis of the code, and even more
correct construction by design through the use of formal methods, are bound
to improve correctness and thereby safety. We used this opportunity to conduct
a pilot project for evaluating the feasibility of methods and tools for eventual
deployment.

3.2 Aim and Objectives of the Case Study

The overall aim of the case study was to re-engineer the control software for a
PSS – a subsystem of a hemodialysis machine – piece-wise so that the subsys-
tem can be transformed into a form which allows for proving certain correctness
properties, e.g., by verification (by automatic theorem proving), validation (by
simulation), and automatic test case generation. More generally, the quality, cer-
tifiability, and maintainability of existing software should be gradually improved
in this way. The primary objectives of the case study were that

– C code should be automatically generated from a formal specification,
– it should be possible to directly integrate the resulting C code in the existing

software (without further human intervention or post-processing), and
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– the generated code should perform exactly the same externally visible actions
as the original one. (This objective should be validatable through inspection
of the generated code by developers of the original C code.)

Thus, the project crucially involved re-engineering. This is certainly not an
exceptional situation as we have ourselves experienced other cases that required
re-engineering of often completely undocumented legacy code before. There exists
also much safety-critical software for which only informal specifications are
available.

3.3 System Interface

The interface of the system’s most important procedure has the form,

void do sensor(const SHARED DATA ∗data access)

where SHARED DATA is a structure containing two other structures, one for data
which must not be changed (read-only) and another for data which may be
changed (write access) by the software; values of the writable structure are also
read within the module, e.g., old values for comparison with the new values
(before the old values are updated). In total, the two structures contain sev-
eral dozen data fields, most of which are writable. It should be noted that the
respective procedure parameter, data access, serves for both input and output;
there is no formal output parameter, although output is actually produced (as
a “side effect.”) Access control for the shared data is not implemented within
the system in question.

4 Re-engineering Process

In order to re-engineer the PSS, we first converted its code into an abstract
model in the language of a formal method (and the respective tool platform).
Then, we tried to automatically generate code out of this model such that the
result can again be integrated into the whole targeted software system.

There was no complete requirements specification available for the respective
PSS except for a document that briefly explained a large number of parameters
and modes of operation and gives a brief, pseudo-code outline of the required
actions. The detailed specification had to be extracted from the provided C code
(approx. 1K LoC).

To this end, we abstracted from the C code by means of the ASM method.
This method is more suitable for reverse engineering as it allows for n-to-m
refinement, where the number of algorithmic steps in the refinement (m) may
actually be smaller than the original number of steps (n). B, in contrast, allows
only for 1-to-1 refinement (through the definition of originally abstract sub-
machines). On the other hand, tool support for B is much better than for ASMs,
especially for verification and code generation, so we chose to use both methods
to exploit their relative strengths where appropriate.
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One of the important cornerstones of the specification process is the repre-
sentation of requirements at various abstraction levels using the notion of refine-
ment. By following this technique, requirements are easy to specify, analyze and
implement. In this style of specification writing, requirements are incrementally
added to the model until the model is detailed enough to be effectively imple-
mented. If the refinement model of the method is flexible enough, such as that of
the ASM method, it is possible to reverse this process for the sake of increasing
abstraction.

It is not possible to directly translate an ASM model to a B model with an
off-the-shelf tool or method. However, both B and the ASM method are state-
based methods and corresponding models are similar enough to allow for manual
translation with a high degree of confidence, provided that the theoretically
more expressive ASM method is exploited only to the point where it remains
compatible with the expressive capabilities of B.

Once the informal requirements were formally specified, the next step was
to make sure that the requirements conformed to verification standards, i.e.,
requirements are consistent and verifiable. During this process, it was deter-
mined that a specification conformed to some precisely expressed properties
that the model is intended to fulfill such as well-definedness, invariant preser-
vation and other safety conditions. For verification of the model, we used two
well-established approaches of theorem proving and model checking. The for-
mer helped us to reason about defined properties using a rigorous mathematical
approach. The latter helped us to verify dynamic properties of the model by
exploring its whole state space. While theorem proving is helpful in ensuring

Fig. 1. Model-driven re-engineering process
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safety constraints of the system, model checking is effective in verifying tempo-
ral constraints of the system such as liveness and fairness properties and also
help in validating the specification against requirements.

The last step of the formal development process is the translation of the
requirements specification into program code. This last refinement step is, in
fact, already very detailed and close to the implementation stage. The whole
re-engineering process is depicted in Fig. 1.

As the main objective of the work was code generation, the rest of the paper
will focus only on our experiences and challenges with the B method. However,
for a detailed comparison between the ASM and B methods, please see [17].

5 Modeling Experience

In the following, we present our modeling experience with the B method. We
first describe what we particularly liked about the method, and later, what was
limiting about it.

5.1 Strengths of the B Method

Composition

Support for composition and decomposition in a modeling method is important
for any domain of application when it comes to “larger-than-toy” systems [9].
Without decomposition, large complex models cannot be effectively over-viewed
and handled. Decomposition is also of great value while proving the correctness
of a large system. Composition is also important for model reuse.

Composition and decomposition are supported by the B method by allowing
to call operations of other machines and to access, e.g., data structures from
other machines. This works basically like calling procedures in procedural pro-
gramming languages, but B additionally provides a few options regarding the
visibility and accessibility of elements of other machines. Every machine has its
own file.

Refinement

Refinement is a way of specifying the requirements of a complex system through a
series of models for the same system with increasing depth of detail or, for reverse
engineering, with increasing abstractness. Refinement is the central element in
the B method. B defines a very powerful and well-supported refinement process.
B supports a one-to-one notion of refinement. This is rather strict but eventually
results in a higher degree of automatically discharged proofs. B allows to refine
a model up to the level of detail required for implementation, or actually right
down to programming code.

In practice, refinement relies very much on defining the actions of opera-
tions which can initially be the empty action, “skip.” That is, in the oper-
ations of one machine one can call operations of other machines which may
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initially be left abstract. For instance, in this project, one machine may call
another machine called “update shared data,” for which the algorithmic defi-
nition remains “skip,” i.e., abstract, because those details are not relevant for
the specification or for the current level of abstraction.

Nondeterminism

Support for nondeterminism in a modeling method is very useful for keeping
models abstract. B supports nondeterminism by allowing for nondeterministic
choice of values for variables out of a given set (corresponding to Hilbert’s ε oper-
ator) as well as by operators “ANY” (unbounded choice of value) and “CHOICE”
(nondeterministic choice of alternative substitutions). In this fashion, new con-
cepts can be added to specifications abstractly in the earlier refinements and
can be concretized in the later ones. For example, in this project, we initialize a
variable, potentially of a complex data type, with an unspecified value from this
data type – as in “l d sensor input :: SENSOR DATA.” Thereby no assumption
about a concrete value is made other than that it is of type SENSOR DATA.

Correctness Assurance

The possibility to express and prove properties, such as consistency, safety and
temporal constraints (e.g., termination, deadlock freeness, fairness, and liveness),
are integral to reason about the correctness of a safety-critical system. B enables
the expression of typical safety properties through invariants. An invariant is a
property that the specification is assumed to meet and maintain. Following is a
sample requirement from the project:

If the system is in the preparation mode or if the system is in the therapy
mode and if the critical fluid temperature exceeds the maximum tempera-
ture of 41 ◦C, then the software shall disconnect the supply of the critical
fluid within 60 s and execute an alarm signal.
The safety properties are specified in terms of invariants as follows:

inv1 systemMode = Preparation ∧ criticalFluidTemperature > 41 ⇒
systemState = { CriticalFluid �→ Disconnected} ∧ disconnectionTime < 60 ∧ alarm = ALM1

inv2 systemMode = Therapy ∧ criticalFluidTemperature > 41 ⇒
systemState = { CriticalFluid �→ Disconnected} ∧ disconnectionTime < 60 ∧ alarm = ALM2

The support environment Atelier B generates POs to make sure that the
system specification is well-behaved, i.e., maintains system invariants.

5.2 Limitations of the B Method

No Loops Except in Implementations

A restriction for abstract machines and refinements except for implementations
– the last refinement steps before code generation – is that no loops are allowed
(in implementations, WHILE loops are possible). While we did not need loops in
our case study (so far), this restriction can certainly be critical.
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Data Types

In a specification and an associated abstract model, usually very few data types
are really needed. For this purpose, the data types provided by B (including
booleans, integers, arrays, and structures) are largely sufficient. However, in an
associated programming code – which also has to take into account efficient use
of resources, amongst others –, we often need ultimately more such as a 16-bit
integer, a 8-bit unsigned integer, and strings. In the context of the programming
language C, pointers are also important constructs whose support is not present
in typical modeling languages, so as B. In our case, already the modeling of the
interface turned out to be a problem due to this nonexistent support of pointers.

Subsets

In B0 - the restricted B “dialect” required as a basis for code generation - all
enumerated types have to be redefined as integer intervals. Arbitrary sets of
integers are not allowed. But this precludes the definition of subsets (sub-types)
whose members are not consecutive members of the base type. For instance,
when we have a range of (named) colors as the base set, then we cannot create
a greater number of arbitrary subsets of that – say, rainbow colors, RGB-colors,
reddish colors, etc. – even with the most fancy ordering of the colors in the base
set. (n.b., the result – an interval – is not a “set” in the mathematical sense any
more because of the imposed ordering!) In general, the limit is two subsets.

In our case study, certain data types are used all of which may have the
value NO DATA. The definition of such types is not possible in B0 because (a)
more than two of such otherwise disjoint types cannot be defined as sub-types
of a common supertype (or SET), as stated above, and (b) NO DATA can only be
defined once and cannot be a member of different sets (which have to be disjoint
when defined in SETS). (Note that we are only talking about enumeration sets
here – with numerical types (e.g., INT), this is not possible at all.) A workaround
for the “NO DATA” problem is to define different constants for different types –
NO DATA X, NO DATA Y, ... –, but this is not compatible with given interfaces.

Note that this problem only surfaces at the level of implementations, i.e., the
last refinements before code generation; in B proper, arbitrary subsets can be
defined (as constants).

Restrictions on Record Handling

Single record fields cannot be directly set via an operation call. Instead, an
auxiliary variable has to be used (i.e., such an assignment requires two lines of
code instead of one). We suspect that there may be further, similar restrictions
for handling record fields; see also code generation problems regarding struc-
tures/records in the next subsection.
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Identifiers

The language B imposes restrictions on identifiers: scalar parameters of machines
must be lowercase only while set parameters must be uppercase only. While this
had no direct influence on our case study (although the use of machine param-
eters might be considered in further development), this indirectly imposes the
convention to use only uppercase names for sets in general, and only lowercase
names for constants and variables, for instance. This, however, may clash with
conventions of existing code (and did so in our case study).

No Pragmas

It seems impossible to model compiler directives (pragmas) in B. Pragmas might
be seen as too implementation-specific constructs to earn a place in formal mod-
eling, but they are frequently used in legacy code (including the one we dealt
with; e.g. #if 0 ... #endif) and may be required when just single modules
of a larger system are to be modeled. (Note that #include and #define state-
ments are automatically generated by Atelier B from respective IMPORTS or SEES
sections or from constant definitions, respectively.)

6 Code Generation Experience

In the following, we present our experience with code generation. For the case
study, we used the community version of Atelier B including its code generator
that is released for public use after every two years4.

6.1 Strengths of the Atelier B Suite

The provided tool support is very good. Atelier B comes with code generators for
different target languages, including C, C++, Java, and Ada. Although the gen-
erated code requires some post-processing, it is a good basis for the implementa-
tion of a B specification. The generated code is well-structured, well-documented
and legible.

6.2 Limitations of the Atelier B Suite

Identifiers

In order to fit into a given interface, identifiers have to match exactly. However,
this is not possible with the code generator of Atelier B. This code generator
produces identifiers – most importantly, procedure names – as a combination of
the machine name and the operation or set or constant name, separated by a
double underscore. This is motivated by the need to avoid identifier clashes and
4 According to ClearSy, they will fix some of the concerns raised in this paper in the

upcoming version of the code generator.
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related scoping problems (see [1, p. 6]). However, this renders it impossible to
get procedure (and custom type) names prescribed by an existing interface.

This is a crucial problem in a project setting where only a part of an existing
piece of software shall be transformed to code generated from a formal model.
Manually rectifying all these names is tedious and error-prone. Automated post-
processing would have to be performed separately for each project5.

Structures and Records

The translation of structures (“struct” types) is actually faulty: the result can-
not be compiled without post-processing (we did manual corrections).

In the B model, we had a single definition file in which all the struct types
were defined. But in the generated code, any typing declaration with such a
structure was individually expanded to the whole type definition with all fields
and their types, and everywhere it was given a different name. In the interface
of a procedure with two parameters of the same struct type, this struct was
twice expanded and given two different names. The respective type names (R 1,
R 2, ...) even differed between the header files and the corresponding definition
files.

To mend this, in post-processing, one has to make the necessary struct
definitions once and for all in some header file and then change every occurrence
of this type to the respective type name. If one has large structures (in our case,
with up to 36 fields), this is hard to automate, even using regular expressions,
and error-prone. (The regular expression “struct R ? {∗}” actually matches
any occurrence of any structure type, and the number attached to R does not
give any indication as to which particular structure type is actually given in the
respective place.)

Miscellaneous Observations

In B0, the language from which code can be generated, we discov-
ered a strange restriction on expressions, i.e., for IF conditions: a state-
ment of the form “IF a < (b + c) THEN ...” is not possible (though
it is in B in general); instead, one has to add an auxiliary statement:
“aux := b + c; IF a < aux THEN ...”6.

An issue related with data type restrictions as well as with identifier restric-
tions is that the generated code requires the Standard Library for C. This may
seem reasonable at first sight, but in practice, the Standard Library is not always
used in industrial practice. This is a real problem in particular when the task
is to obtain code which fits into given interfaces of a larger, existing system. In

5 According to ClearSy, in the upcoming version of the code generator, custom iden-
tifiers (without prefix) would be possible. This would indeed constitute a major
improvement and should be regarded as an important and feasible requirement for
code generators.

6 According to ClearSy, this construct eases the proving process.
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such a case, there is no realistic possibility to change the libraries used or to
rename types (or other identifiers). At the moment, further post-processing is
required if, e.g., the Standard Library is not used or not supported in the target
environment.

7 Related Work

Bert et al. [7], apart from our work, also critically evaluated the performance of
the Atelier B platform in this direction and have suggested several improvements.
An experience report involving Atelier B by Beneviste [6] briefly mentions code
generation for VHDL. However, both of these aforementioned works were not
really useful for our case study.

Event-B is a variant of B for higher-level specification, verification and val-
idation of systems and environments where software systems are supposed to
operate. We, alternatively, tried to generate code from an Event-B model of the
pressure sensing system but failed. It turned out that none of the available code
generators for Event-B was usable for our purpose. The one by Wright [30] was
custom-built and only supports a part of the Event-B syntax. The most signif-
icant shortcoming is that it does not support contexts and therefore cannot be
used when constants and sets are used in a model. The one by Fürst et al. [13]
is not publicly available, thus we could not use it at all. EB2ALL [26] explicitly
requires the manual alteration of code after generation. This is contradictory to
one of the objectives of the case study. The Tasking Event-B tool [11], which
appears to be the most mature of all, is compatible only until Rodin 2.8 (the
current Rodin version at the time of writing this paper is 3.2) and may only
work properly on 32-bit machines; however, such a machine was not available
for the case study.

8 Conclusion

The use of formal methods is “highly recommended” for safety-critical software
by international standards and can actually also be economic in the long run
for other kinds of software. Yet there are still a couple of hurdles for a more
widespread use of formal methods in industrial software development, which
have to be addressed one by one. Two such issues are the extra effort invested
in formal modeling and the potentially unsafe transition from the specification
to the implementation. Both issues can be tackled by means of automated code
generation from formal models, i.e., from those models which are used in formal
specification and analysis.

We have put the current state-of-the-art tool support for code generation
to test with a case study drawn from real industrial software development. We
have chosen B for this purpose because it is well-suited for ordinary software
development, is well-known also in parts of industry, supposed to be mature,
has commercial tool support including code generation, and there was already
expertise available within the team.
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The results of our practical investigations are mixed. First and foremost: yes,
generating code from B models, using B’s standard tool Atelier B, does work.
However, there are several restrictions which we have encountered, ranging in
severity from inconvenient to critical. Some of these restrictions not only concern
code generation, but also modeling in B.

We believe that the necessary improvements are feasible with reasonable
effort. For the scenario which the formal methods community typically envisages,
i.e., where one starts with a completely new development from requirements
engineering via formal specification and analysis to design and coding (etc.),
code generation already works quite well when we take aside type restrictions,
the problems with records which we encountered, as well as efficiency issues.

But for a scenario which involves re-engineering and improving a single mod-
ule out of a large system by means of (e.g.,) the B method, there are still major
shortcomings, as we have described in detail in this paper. Note, however, that
other application examples are likely to identify more issues; to name just a few
examples, we did so far not touch upon loops, recursive function calls, float (real)
types, or strings. Some of the necessary improvements will probably require more
customization of the tool. This concerns enhanced support of (custom) types in
particular. It should be noted, though, that the tool is still being improved and
certain issues may even have been solved by the time this paper is actually
published, or will be solved in the near future.

According to ClearSy [19], almost all safety-critical products using B have
their own code generator because of the constraints imposed by the platform
running it. However, this further confirms our impression that off-the-shelf code
generation is still an open issue (which probably holds for other formal methods
as well).

A factor for the successful application of a particular method which cannot
be neglected is the existence of a dynamic community wherein experiences can
be shared and issues can be discussed. The B method has rich tool support and
a sizable community in this regard. On the other hand, more popular methods
with larger and more diverse communities, such as Event-B and TLA+, are
either not universally applicable, or do not support code generation, or both. This
suggests that a new impetus is needed for general-purpose formal methods which
support the whole software development cycle, from specification and analysis to
code generation and test suite generation to maintenance and versioning/product
family development.

Still, it must be noted that, in principle, most important technologies and
tools are there and do work. What is desirable now is further improvement and
consolidation of these methods and tools.

We end with final remarks for practitioners. When starting to use formal
methods in software development, the goals of their introduction must be clear
and expectations need to be realistic. Furthermore, it is important to select a
suitable method for the chosen goals and with respect to the given organizational
environment and similar parameters. It should also be considered to introduce
formal methods incrementally so as to minimize impact on development time and
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costs at each step and thus lowering the economic and psychological thresholds
which cannot be completely avoided at the beginning. This article may help to
assess what can be expected from the current state-of-the-art of some important
aspects of formal methods. This article also explicitly addresses the scenario
of incremental introduction, in particular, using formal methods for selected
modules out of a larger system.

Acknowledgment. Thanks to Thierry Lecomte (ClearSy) for providing feedback that
helped a lot to improve the quality of the presented work.
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